
Handling concurrent changes in collaborative process model development:
a change-pattern based approach

Selim Erol, Gustaf Neumann
Institute of Information Systems and New Media

Vienna University of Economics and Business
Vienna, Austria

serol@wu.ac.at, gneumann@wu.ac.at

Abstract— Business process modeling has gained increasing
interest with the advent of business process management
systems in organizational contexts. As business processes are
subject to frequent change also respective models are complex
and under continuous development with multiple modelers
being involved. This paper presents an approach to integrate
concurrent changes of multiple modelers equivalently into a
resulting process model. Through change patterns we capture
the semantics of changes and use them for recognizing instances
hereof from subsequent model revisions. These change patterns
were identified by analyzing a set of recurring changes during
model creation, modification, and refactoring. Together with
the concept of conflict types change patterns are used as a
conceptual means to implement a semi-automated merging
mechanism within a collaborative wiki-based modeling envi-
ronment. This approach is expected to facilitate smooth (incre-
mental and iterative) development of models in highly dynamic
modeling environments and is a human-oriented way to conflict
resolution in (concurrent) process model development.

Keywords-information systems design; business process de-
sign; business process modeling; collaborative modeling;

I. INTRODUCTION

Business process modeling is an activity performed for
various purposes. One purpose of process modeling in the
context of organizational management is the documenta-
tion of actual (“as-is”) processes for knowledge transfer
among process stakeholders, the identification of weaknesses
through process analysis and simulation and the documen-
tation of desired future states (“to-be”) of processes [1]. For
the purpose of documentation and communication usually
informal modeling techniques are sufficient. For the purpose
of analysis and simulation semi-formal and formal modeling
languages are used that enable the unambiguous formulation
of a business process model and the quantification of input-
and output variables, pre-/post-conditions and so forth. In
recent years as well process models are increasingly used
for the purpose of orchestrating business process related
software services and applications. The latter purpose re-
quires a valid specification of process models to enable their
execution [2].

For the above mentioned purposes of process modeling
several techniques have emerged in the last decades. For
example, the concept of Event-driven Process Chains (EPC)

[3] is targeted at capturing business processes from a busi-
ness perspective and is considered a semi-formal approach
[4] as it does not cover the semantics needed for an execution
environment. Business Process Modeling Notation (BPMN)
is a concept that extends the concept of EPCs with a
well specified execution semantics [5] and has therefore
been widely adopted in the business domain [6]. All these
modeling techniques incorporate the concept of activities
as the basic unit of modeling. The main goal of business
process modeling is therefore to identify business activities,
to arrange them in a certain order and provide contextual
information like the resources needed, the output provided
and the conditions under which an activity is performed.

In practice business process design is a highly collabora-
tive activity that typically involves various stakeholders of a
process. Although process models as one category of output
are mostly created and maintained by a small group of ded-
icated experts, situations are likely to occur where changes
to process models are intentionally or unintentionally per-
formed in parallel. This is especially true within dynamic
organizational environments where processes and respective
models are frequently adapted to fit different contextual
and situational needs or environments where a rather large
community of modelers exists that is not necessarily aware
of each others changes and access to a model collection.
Such highly interactive modeling scenarios impose several
challenges regarding the meaningful recognition of change
intentions from a model revision and the integration of such
change intentions to ensure the completeness and validity of
the final model artifact.

In domains as software development such problematic
concurrent situations are typically addressed through version
control systems (VCS) that allow a developer to be aware
of intermediate changes and to resolve potential conflicts.
Most such concurrency handling approaches are based on
text-based merging techniques [7] that assume a line of
text as the smallest unit of comparison and merging [8].
Though, pure text based approaches do not hold for other
content types as for example tree-like or graph-like data
structures. In research and practice, several approaches have
been suggested that address problems resulting from the

peculiarities of such data structures on a technical level.
A comprehensive survey of graph-based model merging
principles and techniques is given in [7], [9], [10]. For
process model merging especially the work of [11]–[14]
can be regarded as foundational. However, prior approaches
in process model merging especially focus on syntactic
conflicts and presume process models that are complete in
the sense that they are syntactically correct. A shortcoming
of current modeling environments is as well that they do
not support modelers in understanding the rationale and
context of conflicting changes but assume that a modeler
is capable to merge changes on a technical level (e.g. data
representation level like XML).

In the following sections we will address the above
described problem of concurrent changes to process models
in detail. First, we will frame the notion of concurrency
on a conceptual and formal level (section II). Second we
will outline how make use of catalog of change patterns to
describe process model changes on a semantic level and
derive adequate strategies for resolving/merging conflict-
ing/concurrent changes. Finally, we will illustrate how we
implemented this approach in a highly interactive wiki-based
process modeling environment.

II. CONCURRENT SCENARIOS IN COLLABORATIVE
PROCESS MODELING

Collaboration in process model development involves both
creative and communicative activities. Where creative activ-
ities are targeted on the incremental development of a model
artifact, communicative activities aim at the coordination
of such activities. These types of activities are involved
to varying extent in the main stages of process model
development [15] where different scenarios of collaboration
may occur. The first activity targets at elicitation of domain
knowledge and developing an informal model. The second
activity is concerned with formalization of the informal
description and the third main activity is the validation of
a model against the initial requirements. Suffice to say that
these activities are performed in an iterative manner until a
stage is reached where a model is perceived as valid to be
used for some purpose (see above).

Within these activities one can classify collaboration
scenarios along the dimensions of timely and spatial dis-
tribution of interactions [16]. Same-time collaboration is a
scenario where spatially distributed modelers seek to work
concurrently at a dedicated point in time on a model artifact.
Second, different-time collaboration is a scenario where
modelers share a model artifact over a rather long period of
time, repeatedly but more or less unpredictably – in terms
of the point in time – interact with the model artifact. The
spatial distribution of modelers plays a role as in the case of
co-location creative activities is mainly coordinated through
the physical presence of group members whereas in the
case of a distributed scenario other means of awareness and

save

open

open

save

m

uA rA,i

rB,i uB

ritA,s

tB,e

tB,stA,e
ri+1

ri+2

(a)

m

save

open

open

save

ritA,s

tB,e

tB,s

tA,e

uA rA,i

rB,i

ri+1

ri+2

uB

(b)

m

save

open

open

save

ritA,s

tB,e

tB,s

tA,e

uA rA,i

rB,i

ri+1

ri+2

uB

(c)

Figure 1. Scenarios

coordination need to be considered to avoid breakdowns and
interruptions of model development.

In the following we focus on distributed different time
scenarios of collaboration where modelers’ interactions with
a model take place unpredictably over time and space.
We outline three different scenarios that vary regarding the
timely distributions of interactions and define a condition
under which parallel development of a model leads to a
breakdown in model development. Illustrations of several
such scenarios are depicted in figure 1. The illustrations
show a sequence diagram including users interacting with
a content object. The vertical lines depict time lines of the
involved users and the model under work. The latter time
line shows as well the life span of the revisions. Although
the the illustrations show scenarios where only two users are
involved it will hold also for an arbitrary number of users.

Such scenarios can always be reduced to multiple two-user
scenarios.

The first scenario as illustrated in figure 1(a) shows two
model interactions that take place in sequence. The first
modeler uA opens (checks out) a model revision ri from
a repository at point in time tA,s, changes the model, and
submits (checks in) the changes to the repository at point in
time tA,e which leads to model revision ri+1. Subsequently,
a second modeler uB accesses the model revision ri+1,
opens it at point in time tB,s, changes it and submits as
well his new model revision at point in time tB,e which
leads to a revision ri+2. This scenario can be considered
unproblematic as each model interaction is completed before
a new model interaction starts.

In the second scenario as illustrated in figure 1(b) a
revision ri is checked out (opened for editing) by a user uA

at point in time tA,s from a repository (e.g. a centralized
database). Shortly after the same revision ri is checked out
by user uB at point in time tB,s. Both users start to modify
revision ri in their local workspace (e.g. a browser memory).
Thus, both users hold local revisions rA,i and rB,i. Now (at
time tA,e > tA,s) user uA checks in (saves) his temporary
revision to the central repository which will be assigned a
revision number i + 1 > i. Next (at time tB,e > tA,e)
user uB tries to check in his local revision rB,i and will
realize that an intermediate revision ri+1 exists. A situation
occurs where the changes of user uB would overwrite the
changes of user uA. This situation can be considered a
potentially problematic situation as the time frames of two
change operations targeted at the same object and performed
by two different users have a temporal overlap which lead to
situation where modeler uA’s changes will be unconsciously
disregarded. The third scenario (fig. 1(c)) depicted shows
one interaction completely nested with an other. It differs
from scenario (b) only with regard to the order of check-out
times but leads to the same potentially problematic situation
as mentioned above. At least theoretically, a scenario can
occur where either the start time or end times of two
operations are equal t,B = t,A . The probability of such
a scenario occurring increases with the number of involved
users and their related activity. From a technical point of
view the probability of such situations is also determined
by the resolution/granularity of time-stamps to be used.

From the above a concurrent change situation can be
defined as follows: Given two users uA, uB performing
two independent change operations oA, oB on a shared
object m. Both change operations are assigned a time frame
characterized by a starting point t.,s and an end point t.,e. A
concurrent situation is defined as a situation where the end
point t.,e of one change operation lies within the time frame
of the other change operation. The concurrency condition
for two concurrent change operations oA, oB therefore can
be formalized as: tA,s ≤ tB,e ≤ tA,e.

However, concurrent or overlapping interactions (check-

out/check-in sequences) as defined above do not lead nec-
essarily to a problem or conflict (thus we have called
them so far potentially problematic). To be more accurate,
concurrent changes to a process model constitute a conflict
only if their “naive” sequential application leads to a model
revision where changes stemming from one modeler are not
incorporated anymore (discarded) or the final model revision
reaches an invalid state with regard to the constraints of the
modeling environment.

Conflict or not, concurrent interactions are usually unde-
sirable and need to be recognized by an underlying software
environment to allow for an appropriate handling of such
situations be it automated, semi-automated or manually.

III. RECOVERING THE SEMANTICS OF MODEL CHANGES

Changes to process models usually follow a certain ra-
tionale. That is to say, a model is changed due to a certain
business or technology driven requirement, e.g. a production
process needs to be extended with an activity that deals
with quality assessment of the final product. We argue that
incorporating the rationale or semantics of a process model
change into a collaborative modeling environment supports
a modeler in conflict resolution. Moreover, we expect that
having the rationale at hand cognitive effort to integrate
(merge) changes is reduced and the overall maturity of a
process model with regard to it’s validity is increased.

To recover the rationale of a process model change from
subsequent revisions of a process model it is necessary to
have a meta-model that defines the semantics of the process
modeling language used and on the other hand a meta-model
that defines the semantics of change operations to a process
model. For describing and explaining our approach we use
a simplified meta-model which is derived from the BPMN
1 specification. The meta-model comprises the minimum set
of semantic elements to describe the flow logic of a business
process, namely activities gateways and events.

Based on this simple meta-model of a business process
model we introduce a typology of change operations that
are targeted at a process model as whole or it’s constituting
flow elements. We distinguish between three fundamental
types of atomic change operations (or primitives). Namely,
add(ṁ), and modify(ṁ, args), and delete(ṁ) where ṁ
is an instance of a base element’s concrete subtypes) and
args is a set of arguments that is passed to the modify
operation. A modify operation’s arguments may refer to an
element’s attribute name and value. A delete operation is
actually the inverse of a add operation. Thus, we can say that
a process model change consists of a set of atomic change
operations where at least one atomic change operation needs
to exist. This set of change operations can be computed from
subsequent revisions of a process model.

1Business Process Model and Notation, see http://www.bpmn.org

baseElement

+ id: String

FlowElement

+ name: String

FlowNode

Activity Gateway Event

SequenceFlow+sourceRef

+targetRef

1

1

*

*

Task (Sub-)Process

Figure 2. Simpel meta-model based on BPMN 2.0

Having a set of change operations at hand one cannot sim-
ply reconstruct the semantics of a change. Therefore, based
on the above defined types of atomic change operations we
introduce so called change patterns as sets of related atomic
change operation types (compound change operations) that
reflect a particular change rationale. We have chosen the
notion of pattern as it implies a certain form of abstraction
from a concrete change and at the same time reflects
recurring typical changes. For example, a parallelization of
activities might involve two, three or an arbitrary number
of activities. A change pattern description then only refers
to parallelization as an act of logically arranging activities
in parallel. As all possible change patterns can be hardly
predefined on a theoretical basis we have established an open
catalog that can be extended as knowledge about typical
change patterns grows. Also the adaption and extension of
change patterns according a particular context of use is
possible. The catalog of change patterns raises the detection
and handling of conflicting changes from a modeling lan-
guage level (meta-model level) to a domain language level
(ontological level) where changes are represented in a more
expressive way.

As a starting point for the specification of such patterns we
used the results from a prior study of process model adaption
patterns [17] together with our own experience from exper-
iments and a subsequent analysis of change patterns [18].
In contrast to [17] we also included change patterns that
refer to changes that do not necessarily lead to syntactical
correct process models. This is grounded in the insight that
during process model development also incomplete revisions

A

A X+
+

(a) Serial
extension to
right

A B

A BX

-

+
+

+

(b) Serial insert

X

B1

B2

B1

B2

+
+

+

(c) Parallel exten-
sion

A B

A C

X

C

B

- -

+

+

+
+

+

+

(d) Parallel insert

Figure 3. Illustrations of selected change patterns

of models may be submitted to a repository. In figure 3
several examples of change patterns are illustrated. The
atomic change operations involved are symbolized by a (+)
for add(ṁ) and (+) for delete(ṁ) operations.

Each of these change patterns is described in a structured
way. We used an approach similar to [19] to specify patterns
by means of a scheme which requires a unique identifier for
each pattern, a name that reflects the rationale of a change
pattern in short, a description that reflects the rationale in
detail, an illustration, the set of atomic change operations
involved, and a category that allows for a “on-the-fly”
classification of change patterns. In table I an exemplary
change pattern for a serial insert is described. Accordingly,
the serial insert pattern can be characterized by a se-
quence of atomic change operations 〈deleteSeqF low(

−−→
AB),

addTask(X), addSeqF low(
−−→
AX), addSeqF low(

−−→
XB)〉. In

fact X is a placeholder for a sequence of arbitrary activities.
In fact each change pattern has an inverse function that itself
is regarded a change pattern.

Given a set of unordered change operations (e.g. from a
model revision comparison) recognition of a change pattern
requires a clear definition of the semantics of change pat-
terns and an algorithm that is able to detect such patterns.
Moreover, recognition of change patterns requires that each
change pattern can be distinguished from others by a unique-
ness criterion. In the above example, a serial insert would
be recognizable by a sequence of change operations like
〈deleteSeqF low(

−−→
AB), addTask(X), addSeqF low(

−−→
AX),

addSeqF low(
−−→
XB)〉 and the fact that these operations refer

to a special kind of target object within the original revision
ri – in this case a pair of Task elements. We call this
specification of a minimum set of involved change operation

ID P.SerIns.01

Name Serial Insert

Description
Between two subsequent activities an arbitrary
number of additional activities is inserted to form
again a sequence of activities.

Category Extension patterns

Signature 〈deleteSeqF low(
−−→
AB), addTask(X),

addSeqF low(
−−→
AX), addSeqF low(

−−→
XB)〉

Target objects TaskA, TaskB

Illustration

A B

A BX

-

+
+

+

Example
〈deleteSeqF low(

−−→
AB), addTask(C),

addTask(D), addSeqF low(
−→
AC),

addSeqF low(
−−→
CD), addSeqF low(

−−→
DB)〉

Table I
EXEMPLARY SPECIFICATION OF A CHANGE PATTERN

types in combination with a specification of the target object
types a signature that we use to identify instances of change
patterns.

IV. HANDLING CONCURRENT CHANGES BASED ON
CHANGE PATTERNS

Identification of change patterns and their instantiations
is the prerequisite for a proper handling of concurrent
changes - that is avoiding the violation of constraints. As
mentioned above basically two categories of constraints
exist. Modeling process-related constraints and modeling
environment related constraints. By process-related we mean
those constraints that originate from rules and conventions
defined for the purpose of guiding the modeling process.
For example, a rule can be defined that prohibits a naive
(unreflected) sequential application of concurrent changes
to ensure an incremental development of a process model.
By environment-related we mean those constraints that are
related to either the modeling language or the modeling
tool. For example, a syntactical rule may exist that prohibits
an Activity element to have more than one outgoing
sequence flow, or a SequenceFlow requires an activity
element to be existent to which it refers to. Another type of
modeling environment-related constraint may be defined that
does not allow for overlapping shapes in a process diagram.

Detection of constraint violations due to concurrent
changes requires that these are known and formulated in
advance. For example, the detection of a naming conflict of
a model element presumes that a model element may not
have two names or labels. The formulation of constraints
in advance is not trivial as constraints often exist implicitly
and are not explicitly described. For our approach we have
derived syntactic and attribute constraints from the BPMN
meta-model and have established as well some aesthetic con-
straints (which will not be further discussed here). Regarding
syntactic constraints we have only included a limited set of

rules to allow as well for incomplete models. For example,
a process model revision must not include an end event
whereas a SequenceFlow must always have a reference
to a source element (SourceRef) and a target element
(TargetRef).

Our approach in handling concurrent changes to a process
model is mainly based on the assumption that in a concurrent
scenario both users are unaware of each other’s changes and
that these changes to a common antecedent revision have to
be treated equivalently to enable a smooth evolution of the
model artifact. We call this approach “in-favor-of-none” as it
does not prefer one modeler’s changes over the other’s [18].
This implies that individual change operations of both users
are checked against each other and are evaluated whether and
how they can be integrated. Depending on the arguments of
the two concurrent changes different situations may occur:

• Identical concurrent changes have an identical impact
on the model and therefore one of the two edit opera-
tions can be ignored.

• Inclusive concurrent changes include each other.
Therefore both changes can be replaced by the one
that includes the other. E.g. a label suggested by one
user may include the label string of another user. Or a
sequence of activities suggested by one modeler might
contain a sequence suggested by the other modeler.

• Exclusive concurrent changes are mutually exclusive.
That is either edit operation from user A or edit oper-
ation form user B can be applied only. Edit operations
are not identical and inclusive. They cannot sequentially
be applied as this would disregard/overwrite one user’s
input or lead to an invalid state of the model or model
element. E.g. a value suggestion for an integer value.
In this case a resolution mechanism has to be applied
to decide among the two edit operations or to compute
an alternative.

• Independent concurrent changes do not interfere with
each other. Sequential application of both edit opera-
tions would not lead to a conflict. As a consequence
both edit operations can be applied without violating a
constraint or overwriting one edit operations.

To identify and classify combinations of change patterns
according to the above categories we make use of a merge
matrix [20]–[22]. The merge matrix consists of columns
representing change patterns of one modeler and rows repre-
senting change patterns from the other modeler. The items of
the matrix represent all possible combinations of concurrent
change patterns where for each combination conditions can
be defined under which a combination is assigned to a
particular category and which strategy needs to be applied
to handle these concurrent changes to comply with existing
constraints. For example, identical and inclusive conflicts
will be resolved by simply skipping or ignoring one of the
two concurrent changes. Exclusive changes (true conflicts)

need to be delegated to the user or a decision heuristic can be
applied (see for example the recommendation based heuristic
from [23]).

P.SerIns.01 P.SerExtR.01 ParIns.01
P.SerIns.01 →C.1

P.SerExtR.01
P.ParIns.01

Table II
EXCERPT OF MERGE MATRIX USED FOR CRITICAL PAIRS ANALYSIS OF

CHANGE PATTERNS. C.1 POINTS TO A CONFLICT TYPE THAT IS
DESCRIBED IN DETAIL IN TABLE III

Table II shows an exemplary merge matrix that refers to
selected change patterns and corresponding conflict types.
A detailed specification of an exemplary conflict type along
with a merge strategy is provided in table III. For this
purpose a structure is used that describes the conditions
under which a conflict can be detected, a merge strategy
and an illustrative example. We used the concept of a merge
matrix on a conceptual level to systematically identify the
various types of conflicts and as a basis to formalize conflicts
for a later implementation.

ID C.1

Name Concurrent Serial Inserts
Change patterns

involved P.SerIns.01, P.SerIns.01

Conditions for
conflict

Serial inserts address identical subsequent flow
elements of type activity A1 and A2

Sequential
application would

lead to
(constraints

violated)

two parallel sequences of X activities in between
the two target activities A1 and A2.
constraints violated:
(1) a flow element of type activity must have not
more than one outgoing sequence flow,
(2) a flow element of type activity must not have
more than one incoming sequence flows

Resolution
strategy

compute similarity and in case
(1) activity sequence XA = XB → decide for
the first,
(2) activity sequence XA ⊂ XB → decide for
XB and vice versa,
(3) activity sequence XA 6= XB → insert both
XA and XB enclosed in parallel gateways,

Example

The example shows case (3) of res. strategy
where both serial inserts are extended with
parallel gateways to comply with syntactic
constraints.

+

XA

A B

XB

A C

XB

XA

+

Table III
EXEMPLARY SPECIFICATION OF A CONFLICT TYPE

V. IMPLEMENTATION IN A WIKI-BASED COLLABORATIVE
PROCESS MODELING ENVIRONMENT

As a proof of concept we implemented the above outlined
mechanism of concurrent change handling into a highly
dynamic collaboration environment. Namely, we incorpo-
rated the concept into a special wiki application engine
that was previously extended towards comprehensive process

modeling support. xoWiki is an open-source wiki engine [24]
which was developed at the Institute of Information Systems
and New Media. It is implemented in xoTcl – an object-
oriented extension of Tcl [25], [26] – and rests upon a highly
scalable community platform development framework [27].
XoWiki combines aspects of wikis (ease of page-creation)
with typical features of a content management system (revi-
sions, reusable content, multiple languages, page templates).
For the purpose of process modeling we extended the user
interface to support diagrammatic creation of process models
and their syntactical validation. xoWiki also has a built-in
workflow engine that allows for flexible enactment of form-
based workflows.

compute sets of
change operations

compute merged
edit script

apply merged
edit script

revisions
rA,i, rB,i, ri

sets of change operations
oA,i, oB,i

merged edit script
sAB,i

revision
ri

merged revision
ri+k

detect and annotate
instances of

change patterns

sets of change patterns
pA,i, pB,i

catalog of
change patterns

conflict types

Figure 4. Implemented workflow for handling concurrent changes

In a first step we focused on the implementation of
a limited set of change patterns and a respective merge
matrix. Additionally we aimed to provide a user-interface
that efficiently supports users in case manual interventions
are required. The basic workflow of our implementation
can be seen in figure 4. Accordingly we implemented
several methods to accomplish the tasks outlined in the
workflow. First, the concurrent revisions are compared with
their antecedent revision of the current modeler and two
sets of atomic change operations constituting the revisions
are computed. Second, the two unordered sets of change
operations are matched against the catalog of change pat-
terns to compute two sets containing semantically annotated
instances of retrieved change patterns. We accomplished
this mainly by recursively searching for related atomic
change operations. As a result we obtain instances of change
patterns that are classified according to our catalog of change
patterns. Third, each combination of change patterns are
checked whether the conditions for a conflict hold and in
case changes are not independently applicable a respective
resolution strategy is chosen. As a result we produce a

set of ordered atomic change operations that constitutes
an edit script sAB,i which is subsequently applied to the
antecedent revision to obtain a merged revision. All those
pairs of concurrent change operations where automated
resolution is not possible are transformed into a change
operation that creates an annotation element (e.g. for BPMN
a documentation element) which contains all relevant data
to reconstruct the conflicting changes though the change
operations themselves are omitted.

As explicated above “true” conflicts need – in case no
resolution heuristic is available – to be delegated to the user.
For this purpose the different change patterns involved need
to be visually presented to the user. For example, in case two
modelers suggest different values for the name property than
those values must be presented in a way that the user can
decide which value to use. In addition a user inspecting a
conflict and striving for a resolution needs a possibility to
simulate the impact of the two suggestions and must be able
to switch back and forth between the suggestions. In case a
modeler is not able to take a decision immediately (at the
time of the recognition of the concurrent situation) it should
be possible to procrastinate the conflict resolution to a later
point in time or to another modeler (see also figure 5).

The result of revision merging is presented to the user
through the model editor component. Additionally, the an-
tecedent revision, the concurrent revision and the user’s
revision are presented on multiple transparent layers (instan-
tiations of the canvas). The user confronted with the merged
revision may inspect all revisions and may hide or show
revisions and overlay revisions as needed. Also revisions
can be selected to serve as a basis for manually resolving
conflicts in case the computed revision is not satisfying.

VI. CONCLUSION

In this paper we have summarized findings from a con-
ceptual investigation of concurrent situations in process
modeling. We argue that given a concurrent situation as
defined in section II changes should be integrated in a way
that ideally reflects intentions of all modelers. Moreover we
suggested merging of concurrent changes to be based on so
called change patterns that reflect the rationale of a change
which in turn will facilitate the understanding of changes and
their resolution in case conflicts need to resolved manually.

The contributions of the paper are threefold. First, we
introduced the notion of change patterns and show how we
semi-formally described them through a structured pattern
language, and started to collect them in a pattern catalog.
Second, we showed how we use these patterns together
with a merge matrix and corresponding conflict types to
capture the complexity of process model merging. Finally,
we illustrated in short how we implemented a preliminary
version of our concurrency handling approach in a highly
dynamic wiki-based process modeling environment.

Our approach reflects a preliminary state of ongoing
research where we aim to provide mechanisms that sup-
port modelers in highly dynamic scenarios of collaborative
modeling. In future we aim to extend the above sketched
conceptual framework and heuristics with a formal basis that
is largely independent from a particular implementation and
modeling language. Furthermore, we will aim to develop a
comprehensive, extendable and retrievable catalog of change
patterns and associated conflict types that can be integrated
in collaborative process modeling environments to facilitate
handling of concurrent changes.

REFERENCES

[1] I. Davies, P. Green, M. Rosemann, M. Indulska, and S. Gallo,
“How do practitioners use conceptual modeling in practice?”
Data and Knowledge Engineering, vol. 58, no. 58, pp. 358–
380, 2006.

[2] J. Recker and J. Mendling, “Adequacy in process modeling: A
review of measures and a proposed research agenda-position
paper,” in Proc. Workshops of CAiSE, 2007, pp. 235–244.

[3] A. W. Scheer, ARIS – vom Geschäftsprozess zum Anwendun-
ssystem, A. W. Scheer, Ed. Springer, 1998.

[4] J. Mendling, G. Neumann, and M. Nüttgens, “Yet another
event-driven process chain,” in Business Process Manage-
ment. Springer, 2005, pp. 428–433.

[5] M. Weske, Business Process Management: Concepts, Lan-
guages, Architectures, M. Weske, Ed. Springer, 2007.

[6] P. Harmon and C. Wolf, “Business Process Modeling Survey
2011,” BPTrends, Tech. Rep., Dec 2011.

[7] T. Mens, “A state-of-the-art survey on software merging,”
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,
vol. 28, pp. 449–461, 2002.

[8] C. Ignat, G. Oster, P. Molli, M. Cart, J. Ferrié, A. Kermarrec,
P. Sutra, M. Shapiro, L. Benmouffok, R. Guerraoui et al., “A
comparison of optimistic approaches to collaborative editing
of wiki pages,” in Int. Conf. on Collaborative Computing.
CollaborateCom. IEEE, 2007, pp. 474–483.

[9] K. Altmanninger, M. Seidl, and M. Wimmer, “A survey on
model versioning approaches,” International Journal of Web
Information Systems, vol. 5, no. 3, pp. 271–304, 2009.

[10] B. Westfechtel, “A formal approach to three-way merging of
EMF models,” in Proc. of the 1st Int. Workshop on Model
Comparison in Practice. ACM, 2010, pp. 31–41.

[11] J. Küster, C. Gerth, A. Forster, and G. Engels, “Detecting
and resolving process model differences in the absence of
a change log,” in Proc. 6th Int. conf. on Business Process
Management. BPM., vol. 5240. Springer, 2008, p. 244.

[12] R. Dijkman, M. Dumas, L. Garcia-Banuelos, and R. Kaarik,
“Aligning business process models,” in Enterprise Distributed
Object Computing Conference. EDOC’09. IEEE, 2009, pp.
45–53.

Selim Erol, label=Incoming Application

Franz Mayer, label=Application arrived

Conflict:

buttons for hiding revision layers

buttons for choosing a revision for merging

conflict box

Figure 5. Screenshot of xoWiki model editor in conflict resolution mode: a conflict box enables a user to decide between conflicting changes or apply
a manual merge. In the upper right corner several buttons enable switching between concurrent model revisions, merged model revision and the original
revision.

[13] C. Gerth, J. M. Küster, M. Luckey, and G. Engels, “Pre-
cise detection of conflicting change operations using process
model terms,” in Proc. of the 13th Int. Conf. on Model driven
engineering languages and systems, 2010, pp. 93–107.

[14] M. La Rosa, M. Dumas, R. Uba, and R. Dijkman, “Busi-
ness process model merging: an approach to business pro-
cess consolidation,” ACM Trans. on Softw. Engineering and
Methodology, vol. -, pp. –, 2012.

[15] P. Frederiks and T. Van der Weide, “Information modeling:
the process and the required competencies of its participants,”
Data & Knowledge Engineering, vol. 58, no. 1, pp. 4–20,
2006.

[16] R. Johansen, “Teams for tomorrow [groupware],” in Proc. of
the 24th Hawaii Int. Conf. on System Sciences, vol. 3. IEEE,
1991, pp. 521–534.

[17] B. Weber, S. Rinderle, and M. Reichert, “Change patterns
and change support features in process-aware information
systems,” in Advanced IS Engineering. Springer, 2007, pp.
574–588.

[18] S. Erol, “Design and evaluation of a wiki-based collabora-
tive process modeling environment,” Ph.D. dissertation, WU
Vienna, 2012.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, De-
sign patterns: elements of reusable object-oriented software.
Addison-Wesley, 1995.

[20] J. Munson and P. Dewan, “A flexible object merging frame-
work,” in Proceedings of the 1994 ACM conference on
Computer supported cooperative work. ACM, 1994, pp.
231–242.

[21] R. Heckel, J. Küster, and G. Taentzer, “Confluence of typed
attributed graph transformation systems,” Graph Transforma-
tion, vol. –, pp. 161–176, 2002.

[22] T. Mens, G. Taentzer, and O. Runge, “Detecting structural
refactoring conflicts using critical pair analysis,” Electronic
Notes in Theoretical Computer Science, vol. 127, no. 3, pp.
113–128, 2005.

[23] P. Brosch, M. Seidl, and M. Wimmer, “Mining of Model
Repositories for Decision Support in Model Versioning,”
in Proc. 2nd Europ. Workshop on Model Driven Tool and
Process Integration, 2009, pp. 25–33.

[24] G. Neumann, “XoWiki Content Flow – From a Wiki to
a Simple Workflow System,” in Proc. of 7th OpenACS /
DotLRN Conference, Valencia, Spain, 2008.

[25] G. Neumann and U. Zdun, “XOTcl, an Object-Oriented
Scripting Language,” in Proceedings of 7th USENIX Tcl/Tk
Conference, 2000.

[26] G. Neumann and S. Sobernig, “An Overview of the Next
Scripting Toolkit,” in Proc. 18th Annu. Tcl/Tk Conf., 2011.

[27] N. Demetriou, S. Koch, and G. Neumann, “The Development
of the Open ACS Community,” Open Source for Knowledge
and Learning Management: Strategies Beyond Tools, vol. -,
p. 298, 2007.

